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Abstract—Recent work has explored federated clustering and
developed an efficient k-means based method. However, it is
well known that k-means clustering underperforms in high-
dimensional space due to the so-called “curse of dimensionality”.
In addition, high-dimensional data (e.g., generated from health-
care, medical, and biological sectors) are pervasive in the big
data era, which poses critical challenges to federated clustering
in terms of, but not limited to, clustering effectiveness and
communication efficiency. To fill this significant gap in federated
clustering, we propose a one-shot federated subspace clustering
scheme Fed-SC that can achieve remarkable clustering effec-
tiveness on high-dimensional data while keeping communication
cost low using only one round of communication for each local
device. We further establish theoretical guarantees on the clus-
tering effectiveness of one-shot Fed-SC and exploit the benefits
of statistical heterogeneity across distributed data. Extensive
experiments on synthetic and real-world datasets demonstrate
significant effectiveness gains of Fed-SC compared with both
subspace clustering and one-shot federated clustering methods.

Index Terms—Federated clustering, subspace clustering, high-
dimensional data, statistical heterogeneity

I. INTRODUCTION

Federated clustering (FC) [1]–[4] aims to cluster the data
distributed over a heterogeneous device network comprised
of mobile phones, wearables, etc., known as a federated
network [5]. An FC method generally works in a restricted
client/server model, where raw data on client devices are not
allowed to be disclosed. Specifically, each client device first
clusters its local data and then sends privacy-preserved clus-
tering information to the central server. The server aggregates
the local clustering information to generate global clusters and
then communicates the global clustering information back to
the clients for their local cluster updates. The above process
may repeat till a satisfactory clustering result is obtained.

FC can serve as a data clustering regime for cases where
distributed data cannot be exposed or gathered due to legal
or privacy reasons, e.g., clustering healthcare, medical, or
genomics data residing at different centers. In these cases,
sensitive data are kept locally as exchanging information such
as raw data among clients and the server poses a serious
privacy leakage threat. Recently, the method of one-shot FC,
called k-FED, was proposed in [1], which is based on k-
means and considers using only one round of communication
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between the server and devices, so as to speed up the clustering
process and provide better privacy-preserving. k-FED was
shown to perform very well on low-dimensional data assuming
the number of global clusters is significantly larger than the
number of local clusters at each device, i.e., a notion of
statistical heterogeneity.

Nevertheless, high-dimensional data such as healthcare
records [6], medical images [7], and sequencing data [8] can
render k-FED much less effective as k-means-based clustering
methods commonly suffer from the curse of dimensionality.
To cluster high-dimensional data distributed over a federated
network, we may first apply dimension-reduction techniques
to the local client data and then perform k-FED. However,
this makes the clustering effectiveness guarantee of [1] invalid
and leads to arbitrary clustering results even much worst
than k-FED (see Table IV in the later experiments section).
Therefore, for the high-dimensional data distributed over a
federated network, it remains an open challenge to achieve
high clustering effectiveness.

Furthermore, in order to develop an effective FC approach
that is also communication-efficient, we choose to extend
centralized subspace clustering (SC) methods [9], [10] to
federated networks. SC emerges as a promising approach
for high-dimensional data clustering, as in many applications
high-dimensional data can be well represented by a union
of low-dimensional subspaces [11]. Compared to the con-
ventional high-dimensional data analysis approaches [12], SC
demonstrates strong empirical performance with theoretical
guarantee [13] and has been successfully applied in many
areas like computer vision [14], image processing [15], and
bioinformatics [16]. In order to ensure communication effi-
ciency, we aim to develop a one-shot method for federated
SC. However, bearing data privacy1 in mind, in a federated
network the central server is prohibited from knowing the
raw data, which often leads to inferior solution effectiveness
unless multiple rounds of communication are allowed between
clients and the server [5]. Therefore, it is non-trivial to devise

1While privacy is not the focus of this work, the proposed method has been
designed to reduce communication overhead and potential information leakage
via sampling. Specifically, the method only requires a single communication
round that relies on a limited number of randomly generated samples. More
privacy aspect of the method is discussed in Remark 2.



a federated SC scheme that meets one-shot communication
and high clustering effectiveness concurrently.

In this work, we propose such a scheme called Fed-SC,
where each client device samples its local subspaces in a
uniform way and sends the sampled results to the central server
instead of uploading the entire subspaces or data (see Fig. 2
in Section IV). To verify the clustering effectiveness of Fed-
SC, we establish theoretical guarantees following the works
of centralized SC [9], [10], [17] and empirically demonstrate
its performance through extensive experiments on both syn-
thetic and real-world datasets. Our main contributions can be
summarized as follows:

• We propose a one-shot federated SC scheme named Fed-
SC. To the best of our knowledge, this is the first work
introducing SC to the FC regime, which enables FC to
deal with high-dimensional data.

• We provide theoretical guarantees on the effectiveness of
Fed-SC using the criteria of self-expressiveness property
and exact clustering. Our theoretical analysis formulates
the conditions when the proposed Fed-SC reaches the
optimum and provides insights on the subspace property
and data distribution that can lead to a good clustering
performance.

• We conduct extensive experiments on both synthetic and
real-world datasets to demonstrate the practical advan-
tages of Fed-SC, compared to state-of-the-art centralized
SC and one-shot FC methods.

The rest of the paper is organized as follows. Section II
introduces the related work. Section III presents preliminaries
and formulates the problem. Section IV describes the pro-
posed federated SC scheme. The theoretical guarantees on the
clustering effectiveness are formally provided in Section V.
Experimental results on synthetic and real-world datasets are
reported in Section VI, followed by concluding remarks in
Section VII.

II. RELATED WORK

This section briefly reviews the centralized SC methods and
the works of distributed and federated clustering, alongside
with discussions of the issues in designing a federated SC
scheme that motivate our research.

A. Centralized Subspace Clustering

SC is a common approach to finding the informative clusters
of high-dimensional datasets [11], [18]. Many popular SC
algorithms [19]–[23] first construct an affinity graph of data
points according to the subspaces they lie, and then apply spec-
tral clustering [24] to segment data. Among the algorithms,
sparse subspace clustering (SSC) [9] emerged as a popular
method due to its theoretical guarantee and empirical success.
To alleviate the prohibitive computational complexity of SSC,
its version with orthogonal matching pursuit (SSCOMP) was
proposed in [25] to improve the scalability. Besides, an oracle-
based active set algorithm (EnSC) [26] was introduced to solve
the SSC optimization problems with additional regularization.
Apart from the SSC-like algorithms, there exists another line

of work developed to construct the affinity graph by calcu-
lating the similarity between data points. Thresholding-based
subspace clustering (TSC) [10] was developed by thresholding
the cosine distances between data points, and establishing
theoretical guarantees that rely critically on the uniform dis-
tribution of data points on subspaces. A simple and efficient
greedy algorithm NSN [27] was proposed to estimate the
underlying subspaces and cluster the high-dimensional data.
However, existing SC methods were developed for centralized
settings and are not well-suited for deployment in federated
networks. These methods exhibit prohibitive computational
complexity, and their straightforward adoption to FL would
result in the exposure of the entire underlying subspaces during
computation, thereby violating the stringent communication
constraints and privacy requirements that are inherent to
federated networks.

B. Distributed and Federated Clustering

Distributed clustering (DC). Many distributed implementa-
tions of centralized clustering algorithms were proposed to
handle large-scale datasets in distributed settings. DC is dif-
ferent from FC inherently. DC methods require a large amount
of information transmission and expose the entire underlying
data structure over the distributed networks, which FC forbids.
For the classical clustering methods such as k-means and
DBSCAN [28], their distributed implementations [29]–[32]
exploit the resource of multiprocessors for the computation
of distances among the data points. For distributed SC meth-
ods, the algorithms [33]–[35] were proposed to distributedly
compute the representation matrix.
Federated clustering (FC). In supervised federated learning
(FL), clustering has been widely used to address heterogeneity
issues (e.g., statistical heterogeneity [36] and system het-
erogeneity [37]) by clustering client devices. On the other
hand, clustering the data residing on federated networks is
relatively unexplored. To deploy clustering algorithms in fed-
erated networks, there are certain attempts to explore unsu-
pervised FL. Federated architecture proposed in [3] conducts
unsupervised representation learning to pretrain deep neural
networks using unlabeled data. Other authors [4] focused on
federated representation learning and introduced a federated
algorithm with a dictionary and alignment. Recently, the work
of [1] proposed a one-shot federated k-means algorithm and
rigorously proved the benefits of statistical heterogeneity on
federated k-means. In [2], a federated unsupervised clustering
method was developed by training neural generative models
across the devices. However, the method requires multiple
rounds of communication and faces the challenge of high
communication cost. While the federated methods based on k-
means and generative models reveal the unique advantages of
FC, it remains unexplored to design an effective and efficient
federated scheme for clustering pervasive high-dimensional
data. This motivates us to investigate SC in a federated setting
and design a one-shot scheme with theoretical guarantees.



TABLE I
SUMMARY OF NOTATIONS

Notation Meaning

Z, z The number of devices and the index of the device.
L, ℓ The number of subspaces and the index of subspace.

Xℓ,X
(z) Submatrix where columns are distributed on sub-

space Sℓ and the data matrix on local device z.
X

(z)
ℓ Matrix of data points that distributed on Sℓ in local

device z.
L(z) Number of subspaces where the local data X(z) is

distributed.
Zℓ Number of devices that contains the data from

subspace Sℓ.
T (z), r(z) Data partitions and the number of partitions on

device z.
Θ(z) Samples generated on device z, Θ(z) = [θ

(z)
t ]r

(z)

t=1 .
τ
(z)
i Cluster assignment of the generated sample θ

(z)
i

with τ
(z)
i ∈ [L].

T̂ (z) Updated partitions of local data on device z.
Xℓ,−j [xℓ,1, . . . ,xℓ,j−1,xℓ,j+1, . . . ,xℓ,Nℓ ]
Pℓ The projection matrix to subspace Sℓ.
P(X) The symmetrized convex hull of the columns of X,

i.e., conv(±x1, . . . ,±xN ).
∥x∥p The ℓp-norm of a vector x ∈ Rn, defined as

∥x∥p ≜ (
∑n

j=1 |xj |p)
1
p , where | · | denotes the

absolute value.

III. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we first introduce the problem of subspace
clustering including the existing methods. Then, we cover
preliminaries that characterize the subspace clustering problem
in federated networks. The notations frequently used in this
paper are summarized in Table I.

A. Subspace Clustering
Subspace clustering (SC). There are N high-dimensional data
points in Rn, denoted by X = [x1, . . . ,xN ] ∈ Rn×N . The
data points are lying on a union of L unknown subspaces⋃L

ℓ=1 Sℓ of unknown dimensions {dℓ}Lℓ=1. Subspace clustering
(SC) aims to cluster the data points X into L groups according
to the subspaces in which they lie.
Spectral-based SC method. The spectral-based SC methods
uncover the low-dimensional unknown subspaces [Sℓ]

L
ℓ=1 from

data X by two major steps: 1) constructing an affinity graph
W ∈ RN×N of N data points where the affinity charac-
terizes whether two points lie in the same subspace, and 2)
applying spectral clustering [24] on W to generate L clusters.
Obviously, the first step is the most critical in SC since the
success of spectral clustering depends on the construction of
W. There are two popular methods for constructing W, which
are introduced as follows.

Sparse vector based W. Sparse subspace clustering (SSC)
constructs W by solving the following optimization problem
such that each data point xi ∈ X is expressed as a linear
combination of other data points:

min
ci∈RN

∥ci∥1, s.t. xi = Xci, cii = 0, (1)

where ci ∈ RN is the sparse solution for xi. By arranging
the solutions into a matrix C = [c1, c2, . . . , cN ] ∈ RN×N ,
the affinity graph W is constructed by W = |C|+ |C|T . To
handle noisy datasets, the Lasso version of SSC is a practical
extension often used in numerous applications:

min
ci∈RN

λ

2
∥Xci − xi∥22 + ∥ci∥1, s.t. cii = 0. (2)

Thresholding-based W. Another line of work, thresholding-
based subspace clustering (TSC) [10], constructs W by cal-
culating and thresholding the cosine distances between data
points. In W, each data point is only connected to its q nearest
neighbors in spherical distance, where q is a hyperparameter.
However, compared to SSC, the effectiveness of TSC heavily
relies on uniform distribution of data points and it does not
work well on some real datasets (see experiments in [10]).
Criteria of effective clustering. There are two main criteria
for evaluating SC results, according to [9], [17].

Self-expressiveness property (SEP). SEP ensures that no
two points from different subspaces are connected in the
constructed affinity graph W. In other words, SEP guarantees
no false connections in W, so spectral clustering detects
correct subspaces. However, SEP allows data points belonging
to the same subspace to form multiple connected components.
This can cause spectral clustering to over-segment the data.

Exact clustering. This stronger criterion ensures data points
from the same subspace form a single connected component
in the constructed affinity graph W. As such, the spectral
clustering step can segment the data with no error [24].

B. Federated Subspace Clustering

We now consider SC in a federated network with Z client
devices, where each client device stores a subset of X and
can communicate with a central server. Formally, we index
local devices by z ∈ [Z] and denote the local data matrix
contained in device z by X(z) ∈ Rn×N(z)

, where N (z) is
number of data points in device z with

∑Z
z=1 N

(z) = N . Let
X

(z)
ℓ ∈ Rn×N

(z)
ℓ denotes N

(z)
ℓ local data points distributed on

Sℓ in device z. Note that some X
(z)
ℓ could be empty, we use

L(z) to denote the number of non-empty data matrix on local
device z with 1 ≤ L(z) ≤ L. Not all the devices contain data
points distributed on some subspaces if L(z) < L. Therefore,
we use Zℓ to denote the number of devices containing the data
from subspace Sℓ with 1 ≤ Zℓ ≤ Z. An illustration of such a
federated setting for SC is shown in Fig. 1.
Research problem. Given high-dimensional data X residing
in a federated network with Z devices, federated SC aims to
cluster X into L classes according to the global subspaces
{Sℓ}Lℓ=1 they lie. The developed federated SC method is ex-
pected to minimize communication cost and local information
exposure. Meanwhile, its effectiveness should be theoretically
guaranteed in terms of SEP and exact clustering. We are now
ready to introduce our proposed federated SC method in the
next section.
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Fig. 1. The data points X are distributed on the union of four subspaces
⋃4

ℓ=1 Sℓ ∈ R3. There are four local devices containing the subset of data points
and statistical heterogeneity exists because each local data X(z) is distributed on a union of only two subspaces. In this case, L(z) = 2 for each device
z ∈ [4] and Zℓ = 2 for each subspace Sℓ, ℓ ∈ [4].

Algorithm 1 Fed-SC scheme
Input: The total data matrix X = [X(1),X(2), . . . ,X(Z)] and the

number of subspaces L
1: // Phase 1: local clustering and sampling
2: for z ← 1 to Z do
3: Client z runs Algorithm 2 with X(z) and sends the generated

samples Θ(z) to the central server;
4: end for
5: // Phase 2: central clustering
6: Server runs SC algorithm (TSC or SSC) to segment [Θ(z)]Zz=1

into L clusters;
7: for z ← 1 to Z do
8: Server delivers {τ (z)

t }r
(z)

t=1 to client z;
9: end for

10: // Phase 3: Local update
11: Each client z updates T (z) into T̂ (z) = (T̂

(z)
ℓ )Lℓ=1 by

T̂
(z)
ℓ = {i : i ∈ T

(z)
t and τ

(z)
t = ℓ} for each ℓ ∈ [L];

Output: The partitions (T̂ (1), T̂ (2), . . . , T̂ (Z)) of the total data X

IV. FEDERATED SUBSPACE CLUSTERING

In this section, we propose a federated scheme for SC on
high-dimensional data, denoted by Fed-SC, and discuss its
practical advantages.

A. Federated Scheme

The overall federated scheme of SC is shown in Algorithm 1
and Fig 2. We first apply SC on each local device, which leads
to initial local clusters resident in each device. To securely
send the clustering information to the central server while
preserving the clustering effectiveness, we propose to encode
and then sample local clusters on each device, and the server
just collects samples of the encoded clustering information.
After that, the server performs SC on the collected samples
and generates a global clustering result. Finally, the global
result is sent back to each local device so that each local data
point can be assigned to a global cluster.

The above one-shot process looks straightforward. However,
in order to provide guarantees on the clustering effectiveness,
several challenges as below need to be addressed, which do
not exist in the centralized SC.

Handling heterogeneous data2. Local data residing on dif-
ferent devices could have very different characteristics. The
setting of clustering parameters required by SC on each device
should be dependent on the local data distribution. Therefore,
we only choose to run SSC for local clustering instead of TSC
which requires a uniformness assumption and a thresholding
parameter q. Also for SSC deployed in a federated network,
the number of local subspaces L(z) (as the clustering param-
eter) is unknown and non-uniform across devices. These need
to be estimated for each z from local data distribution, unlike
the centralized case where L is usually given.
Ensuring clustering effectiveness. Making Fed-SC as ef-
fective as centralized FC is challenging due to a lack of
complete data information at the central server. We propose
an effective encoding and uniform sampling method that can
nicely capture the local cluster information to guarantee the
overall effectiveness of Fed-SC.

In the following subsections, we discuss each step of Fed-
SC in great detail, which addresses the above challenges. We
leave theoretical guarantees and the corresponding rigorous
proofs to the next section.

B. Local Clustering

In this part, we focus on discussing how a device z clusters
local data, and the following presented method applies to every
z ∈ [Z]. Note that SSC can generate W according to local
data characteristics instead of manually thresholding for z like
TSC. We propose to employ SSC on device z to better handle
heterogeneous distributed data.

We shall construct sparse vector based W. Each local device
solves the SSC optimization problem (1) in case of noiseless
data or (2) for noisy data, to obtain the self-expression matrix
C(z) for local data points X(z). The affinity graph W(z) is
formed by |C(z)|+ |C(z)|T .

In order to apply spectral clustering on W(z), a parameter,
the number of clusters, must be provided. In the centralized
SC, this is usually provided by default. However, in the
federated network with Z client devices, local data on each

2Throughout the paper, a federated network is said with statistical hetero-
geneity if there exists at least one device z such that L(z) < L. Also, the
smaller L(z)’s, the more significant statistical heterogeneity exists across the
federated network.
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Fig. 2. Main steps of the proposed Fed-SC. Firstly, each client device conducts
a local SC to segment its data (i.e., shapes without color) into different
partitions according to their underlying subspaces, and for each subspace
uploads only one randomly sample (i.e., dash shapes) to the central server.
Then, the central server aggregates the sampled results from all devices and
clusters them with a global SC, i.e., coloring the dash shapes. Lastly, each
client device updates its clusters (i.e., coloring the local shapes) upon receiving
the global clustering result.

device could distribute in a different number of subspaces
and L(z) is unknown for each client device z. Applying the
same number of clusters across these devices does not make
much sense. Therefore, we propose to estimate the number of
clusters on a device z according to local data distribution.

The number of clusters r(z) of the affinity graph W(z) is
estimated by finding the biggest spectral gap of normalized
graph Laplacian L(z), commonly referred to as eigengap
heuristic [38]. Here, the normalized graph Laplacian L(z) of
graph W(z) is defined by

L(z) = I(z) −D(z)− 1
2W(z)D(z)− 1

2

where I(z) ∈ RN(z)×N(z)

is the identity matrix and D(z) ∈
RN(z)×N(z)

is a diagonal matrix where Dii =
∑N

i=1 Wi,j . The
number of connected clusters r(z) is estimated by

r(z) = argmaxi∈[N(z)−1](σi+1 − σi), (3)

where σ1 ≤ σ2 ≤ · · · ≤ σN(z) are sorted singular values of
normalized graph Laplacian L(z).

Remark 1. As r(z) is the number of connected components of
affinity graph W(z), in practice, there may exist false connec-
tions due to errors in the sparse representations C(z). Then,
analyzing the eigenspectrum of the Laplacian L(z) can be
adopted to estimate the number of clusters due to its robustness
against weak connections between the data points in different
subspaces. We use the eigengap heuristic to estimate r(z) in
the experiments of synthetic datasets. For the more complex
high-dimensional datasets, we adopt a general upper bound
of r(z) as described in Section VI, and achieve comparable
performance in the experiments of real-world datasets.

Then, the normalized spectral clustering [24] is applied to
the affinity graph W(z) to generate the r(z) clusters T (z) =

{T (z)
1 , . . . , T

(z)

r(z)
}, T

(z)
t ⊆ N (z).

The underlying subspaces of X(z) include the sub-
space spanned by the data points in each data parti-
tion T

(z)
t . We then estimate the bases of each subspace

span({x(z)
i }

i∈T
(z)
t

). Specifically, data points {xi}i∈T
(z)
t

are
first arranged into a matrix X

T
(z)
t

with a rank dt, then the bases

of span({x(z)
i }

i∈T
(z)
t

) can be recovered using the singular

value decomposition (SVD)3. A basis denoted by U
(z)
dt

is
obtained from the first dt left singular vectors of X

T
(z)
t

.

C. Sampling Local Clusters

In order to upload the local clustering results, a natural ap-
proach is to transmit the set of basis [U(z)

dt
]r

(z)

t=1 , as is performed
in k-means method k-FED where the local centroids are up-
loaded to the central server. However, this direct transmission
of [U(z)

dt
]r

(z)

t=1 exposes the local data structure and arises privacy
concerns. Additionally, the high dimensionality of X(z) results
in high communication costs for the transmission of [U(z)

dt
]r

(z)

t=1 .
To mitigate information leakage and communication cost,

while maintaining clustering effectiveness, we propose to
randomly generate only one sample θ

(z)
t ∈ Rn to repre-

sent the local clustering result from each estimated subspace
span({x(z)

i }
i∈T

(z)
t

).

θ
(z)
t ∈ span({x(z)

i }i∈T
(z)
t

) (4)

It is critical to design a sampling process to keep the utility
of client devices, i.e., to ensure the central server can correctly
aggregate and cluster the uploaded samples [Θ(z)]Zz=1 from
all the clients. Considering the requirement of the uniform
data distribution to theoretically guarantee a successful SC,
we propose to randomly generate a sample θ

(z)
t ∈ Rn uni-

formly distributed on the unit dt-sphere in the dt-dimensional
subspace spanned by points in T

(z)
t . By drawing a coefficient

vector α
(z)
t ∈ Rdt from an isotropic Gaussian distribution

α
(z)
t ∼ N (0, I), the sampled vector θ

(z)
t is generated by

θ
(z)
t =

U
(z)
dt

α
(z)
t

∥U(z)
dt

α
(z)
t ∥2

. (5)

Finally, each device z sends r(z) generated samples Θ(z) =

[θ
(z)
t ]r

(z)

t=1 to the central server. The entire process of local
clustering and sampling (i.e., the key steps of Fed-SC) on
every client device is outlined in Algorithm 2 and illustrated
in Fig 2.

Remark 2. Fed-SC only requires one round of communica-
tion, with each local device z uploading randomly generated
samples Θ(z), each uniformly distributed on a local subspace,
to the central server. Precisely, Θ(z) consists of r(z) samples
from r(z) local clusters, where each subspace is represented by
a single randomly generated sample. Therefore, only a limited
amount of local information is shared across the federated
network. Besides, some existing privacy-preserving mecha-
nisms such as holomorphic encryption [39] and differential

3Throughout the proposed algorithm, we use truncate SVD instead of
standard SVD to reduce the computational complexity.



Algorithm 2 Local clustering and sampling
Input: Local data matrix X(z) on client z

1: Solve the SSC optimization problem for each data point in X(z);
2: Form an affinity graph W(z) by W(z) = |C(z)|+ |C(z)|T ;
3: Estimate the number of clusters r(z) in graph W(z) by Eq. (3);
4: Apply spectral clustering to W(z) to segment N points into r(z)

clusters T (z) = (T
(z)
i )r

(z)

t=1 ;
5: for t← 1 to do
6: Estimate the orthogonal basis U

(z)
dt

from data points in T
(z)
t ;

7: Sample the coefficient α(z)
t ∼ N (0, I);

8: Generate the sample θ
(z)
t by Eq. (5);

9: end for
Output: Data partitions T (z) and generated samples Θ(z) =

[θ
(z)
1 ,θ

(z)
2 , . . . ,θ

(z)

r(z)
]

privacy [40] can be incorporated into Fed-SC to further protect
the privacy while uploading Θ(z).

D. Central Clustering and Local Update

In this step, the central server receives the generated samples
[Θ(z)]Zz=1 from all devices. Note that each generated sample
is distributed uniformly on the unit spheres in the subspaces
estimated by all client devices, the received samples [Θ(z)]Zz=1

are still consistent with the SC problem setting. Besides,
the uniform distribution of [Θ(z)]Zz=1 satisfies the uniform
requirement of TSC on data distribution, thus also allowing
the centralized server to run TSC on [Θ(z)]Zz=1. Even though
TSC can guarantee exact clustering, its ideal performance
critically relies on the optimal choice of q and a sufficient
number of points (see Fig. 4). Considering those limitations
of TSC, the central server can also alternatively run SSC on
[Θ(z)]Zz=1 to obtain L clusters. For the global clustering result,
we use τ

(z)
t ∈ [L] to denote the cluster assignments of the

generated samples θ
(z)
t . The central server delivers the cluster

assignments {τ (z)t }r(z)t=1 to each local device z.
Finally, each local device z receives the cluster assignments

{τ (z)t }r(z)t=1 of Θ(z) and updates the partition T (z) into T̂ (z)

according to {τ (z)t }r(z)t=1 . By aggregating all the T̂ (z) from all
devices, we have the final clustering T̂ of the data that resides
on all the devices in a federated network.

In the remaining, we use Fed-SC (SSC) and Fed-SC (TSC)
to denote the Fed-SC methods where SSC and TSC are
implemented at the central server, respectively.

E. Advantages of Fed-SC

We highlight the practical advantages of the proposed Fed-
SC scheme as follows.
Communication efficiency. Like other one-shot federated
learning methods [1], [41], Fed-SC just needs one round
of communication, i.e., each device z sends the generated
samples Θ(z) ∈ Rn×r(z) to the server in the uplink channel
and the server delivers the cluster assignments {τ (z)t }r(z)t=1 of
Θ(z) to local device z in the downlink channel. Specifi-
cally, assuming each floating point value is quantized into
q bits, then the bits of sending [Θ(z)]Zz=1 in the uplink
is nq

∑
z∈[Z] r

(z). Since τ
(z)
t ∈ [L], the bits of downlink

transmission is
∑

z∈[Z] r
(z) logL. Since Fed-SC is one-shot,

the total communication cost is final as above.
Scalability of large-size clustering. Compared to centralized
SC algorithms, the proposed Fed-SC scheme works as a
divide-and-conquer framework in which the large-scale dataset
is split into local datasets of moderate size. Each local dataset
can be efficiently clustered on each local device, and the
clusters from different devices are aggregated at the central
server. Particularly, we assume that a federated network con-
tains Z devices and there are N points on each local device,
making ZN points in total. The centralized spectral-based
SC algorithms [27], [42] carry computational complexity of
O(Z2N2). As for Fed-SC, the SSC and sampling on each
local device require the complexity of O(N2), while clustering
on the server has a complexity that depends on the number
of devices Z, i.e., O(Z2). The sequential and parallel run-
ning times of Fed-SC achieve reductions from O(Z2N2) to
O(ZN2 + Z2) and O(N2 + Z2), respectively.
Connectivity of affinity graph. Many works on SSC face a
graph connectivity issue [43], i.e., the data points in the same
subspace may form multiple connected components in an affin-
ity graph that leads to an over-segmentation/over-clustering
problem. However, Fed-SC by design can intrinsically mitigate
this issue as each θ ∈ Θ represents a group of data points in
a connected component. The affinity graph on Θ can induce
a global affinity graph on X with more edges that mitigates
over-segmentation. This advantage is validated empirically in
the following experiments.
Robustness against communication noise. Owing to the
robustness of SSC and TSC implemented at the central server
together with our designed sampling procedures, Fed-SC can
exhibit great robustness against communication noise. This
advantage has been investigated in the experimental results.

V. THEORETICAL GUARANTEES

In this section, the effectiveness of the proposed federated
SC scheme is verified theoretically. Our analysis assumes that
the data are noiseless and normalized into the unit ℓ2 norms. In
particular, we focus on the following two common statistical
data models: the deterministic model and the semi-random
model.
Deterministic model. It is a generic statistical model without
any stochastic assumptions on both the underlying subspaces
and the distribution of data points. The raw data [X(z)]Zz=1 is
inherently consistent with the deterministic model.
Semi-random model. The semi-random model assumes the
data representations to be drawn i.i.d. uniformly in each
subspace. In the proposed Fed-SC, the generated samples
[Θ(z)]Zz=1 are consistent with the semi-random model.

A. Definitions

Before we state the main theorems, we provide the follow-
ing definitions of the quantities that characterize the arrange-
ment of subspaces, the distribution of data points, and the
affinity between subspaces.



Definition 1 (Subspace incoherence). Given a vector x and a
matrix X, let the ν(x,X) be the optimal solution to

max
ν∈Rn

⟨x,ν⟩, s.t. ∥XTν∥∞ ≤ 1.

We denote the dual direction νℓ,i of each point xi ∈ Xℓ as
νℓ,i = Pℓν(xℓ,i,Xℓ,−i)/∥Pℓν(xℓ,i,Xℓ,−i)∥2 and arrange them
as columns of Vℓ. We define the subspace incoherence of a
set of points Xℓ as µ(Xℓ) = max

x∈X\Xℓ

∥VT
ℓ x∥∞.

Subspace incoherence characterizes the separability between a
set of points in Sℓ and points in other subspaces. We illustrate
this concept with the following examples.

Example 1 (Orthogonal subspace). Suppose that the sub-
spaces are orthogonal. Then, µ(Xℓ) = 0 for each ℓ ∈ [L]
because each column of Vℓ is orthogonal to all other sub-
spaces.

Example 2 (Disjoint subspace). Suppose the subspaces are
disjoint, i.e., dim(Sℓ + Sk) = dim(Sℓ) + dim(Sk) for each
pair of subspaces. If the first canonical angle of Sℓ to one
of following subspaces is π/4, then the subspace incoherence
µ(Xℓ) ≥ cos(π/4) =

√
2
2 .

Recalling the heterogeneous setting that the federated net-
work is with statistical heterogeneity: for some z ∈ [Z],
L(z) < L. With this notion of heterogeneity, on some device z,
not all subspaces in {Sℓ}Lℓ=1 are presented. Hence, we need to
characterize such data distribution among devices in federated
networks by defining the active set for each subspace.

Definition 2 (Active set). For each subspace Sℓ, ℓ ∈ [L], the
active set of subspace α(ℓ) is defined as,

α(ℓ) = {k ∈ [L] : if there exists at least one device containing data
points distributed on both Sℓ and Sk, k ̸= ℓ.}

If the data points from some subspaces are never involved
on any device simultaneously, there is a relaxation of the
subspace incoherence requirement which only depends on
the subspaces existing in its active set. So, we define active
subspace incoherence, which will be used to characterize the
relaxation of subspace incoherence requirement in federated
networks with statistical heterogeneity.

Definition 3 (Active subspace incoherence). For a set of points
Xℓ with its active sets of subspaces α(ℓ), we define the active
subspace incoherence as

µ̃(Xℓ) = max
x∈Xα(ℓ)

∥VT
ℓ x∥∞

where Xα(ℓ) = [Xk]k∈α(ℓ) denotes the subspaces indexed in
the active set of Sℓ.

Definition 4 (Inradius). The inradius of a convex body P ,
denoted by r(P), is defined as the radius of the largest
Euclidean ball inscribed in P .

The inradius of P(Xℓ,−i) measures the distribution of data
points on a subspace. The small inradius implies that the
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Fig. 3. Illustration of inradius: well-dispersed distribution of data has a large
inradius, and the skewed distribution of data has a small inradius.

data points have a skewed distribution on the subspace, as
illustrated in Fig. 3.

For the semi-random model, due to the points being dis-
tributed uniformly in each subspace, the theoretical analysis
only depends on the distance between subspaces. The subspace
distance is measured by the affinity between two subspaces as
follows.

Definition 5 (Affinity between subspaces). The affinity be-
tween two subspaces is defined by:

aff(Sk,Sℓ) =

√
cos2 ϕ

(1)
kℓ + cos2 ϕ

(2)
kℓ + · · ·+ cos2 ϕ

(dk∧dℓ)
kℓ

where ϕ
(i)
kℓ is the i-th canonical angle between subspaces Sk

and Sℓ.

For the further analysis of theoretical guarantee, we consider
a condition for the distribution of data points on a subspace,
called general position. The assumption that data points are in
general position is mild and widely used in analyses of GPCA
[44] and SC post-processing [45].

Definition 6 (General position). Given a data matrix X =
[Xℓ]

L
ℓ , we say X is in general position if for all k ≤ dℓ, any

subset of k points (columns) in Xℓ are linearly independent.

B. Main Theorems

Although centralized SC methods, such as SSC and TSC,
have been proven effective in seminal works [10], [17], the
proposed one-shot federated scheme, Fed-SC, requires a new
theoretical foundation to guarantee clustering effectiveness.
Fed-SC comprises steps of local and central clustering, which
differ significantly in their data and statistical models, as
summarized in Table II. Fed-SC’s efficacy relies on successful
executions of both local and central clustering. To establish
the effectiveness in a federated network, we present theorems
with sufficient conditions for both local clustering (SSC)
and central clustering (SSC/TSC) under which Fed-SC can
meet the criteria of effective clustering (i.e., SEP or exact
clustering).

Theorem 1 (Fed-SC (SSC)). Assume that each X(z) is in
general position and the non-zero N

(z)
ℓ ≥ dℓ+1 for all ℓ ∈ [L]

and z ∈ [Z]. Let r′ = maxz∈[Z] r
(z), N ′

ℓ = min{N (z)
ℓ |N (z)

ℓ >



TABLE II
SUMMARY OF LOCAL AND CENTRAL CLUSTERING IN FED-SC.

Local clustering Central clustering
Data X(z) [Θ(z)]Zz=1

Statistical model deterministic model semi-random model
Algorithm SSC SSC/TSC

Criteria SEP SEP/exact clustering

0}z∈[Z] and WN ′
ℓ

ℓ be the set of all submatrices of Xℓ with N ′
ℓ

columns. If for each ℓ ∈ [L], the active deterministic condition

min
X̃ℓ∈W

N′
ℓ

ℓ

min
i:xi∈X̃ℓ

r(P(X̃ℓ,−i)) > µ̃(Xℓ),

and the global semi-random condition

c

√
log

Zℓ−1

dℓ
> max

k:k ̸=l
t log[Lr′Zℓ(r

′Zk+1)]
aff(Sℓ,Sk)√

dk

are satisfied, then the final clustering of Fed-SC (SSC) holds
SEP with probability at least 1 −

∑L
ℓ=1 Zℓe

−
√
dℓ

√
Zℓ−1 −

1
L2

∑
k ̸=ℓ

e−t/4

Zℓ(Zk+1) .

Theorem 1 shows that if different subspaces in the active
sets are separated and the points of each subspace are well-
dispersed (i.e., satisfying active deterministic condition), and
the subspaces are not close to each other (i.e., satisfying global
semi-random condition), then Fed-SC (SSC) can correctly
detect all subspaces (i.e., holding SEP) and thus success-
fully cluster the data with high probability. It should be
noted that both these conditions include the special cases
of orthogonal subspace (Example 1) and disjoint subspace
(Example 2), which have been widely investigated in [9], [10],
[17]. Theorem 1 explains quite precisely when the proposed
Fed-SC (SSC) is successful and provides insights on what
kind of subspace property and data distribution can lead to
good clustering performance. Fed-SC (SSC) can be applied to
general datasets, and the expected performance on synthetic
and real-world datasets further verifies its effectiveness.

Note that the subspaces not contained in the active set
of each other (i.e., Sℓ and Sk, k ̸∈ α(ℓ)) are only required
to satisfy the global semi-random condition. If the federated
network is with more statistical heterogeneity, the cardinality
of active sets will be much smaller, and then less subspaces
are required to satisfy the active deterministic condition.
Furthermore, the semi-random condition can be relaxed by
the statistical heterogeneity. To illustrate that, we assume the
subspaces are of the same dimension and there are the same
number of devices containing data points from each subspace,
i.e., d ≜ dℓ and Z ′ ≜ Zℓ,∀ℓ ∈ [L]. We formally state
the relation between Z ′ and the upper bound of the affinity
between subspaces in the following corollary.

Corollary 1. Suppose that dℓ = d and Zℓ = Z ′,∀ℓ ∈ [L].
A set of subspaces {Sℓ}Lℓ=1 satisfy the global semi-random

condition for Fed-SC (SSC) if

max
k,ℓ:k ̸=ℓ

aff(Sℓ,Sk) <
c
√
d log Z′−1

d

t log[Lr′Z ′(r′Z ′ + 1)]
.

Ignoring the constants, the upper bound of affinity between
subspaces is Ω(

√
d√

logZ′ −
√
d log d
logZ′ ) for Fed-SC (SSC). It is easy

to see that the upper bound becomes higher as Z ′ decreases
when d is small. So for each ℓ ∈ [L], the affinity requirement
for Sℓ and Sk, k ̸∈ α(ℓ), becomes weaker as Z ′ get smaller,
verifying the benefit of our notion of statistical heterogeneity4.

The theorem for Fed-SC (TSC) is introduced as follows.

Theorem 2 (Fed-SC (TSC)). Assume that each X(z) is in
general position and the non-zero N

(z)
ℓ ≥ dℓ+1 for all ℓ ∈ [L]

and z ∈ [Z]. Let r′ = maxz∈[Z] r
(z), N ′

ℓ = min{N (z)
ℓ |N (z)

ℓ >

0}z∈[Z] and WN ′
ℓ

ℓ be the set of all submatrices of Xℓ with
N ′

ℓ columns. Suppose that TSC chooses the parameter q ∈
[c1 log(r

′ maxℓ Zℓ),minℓ Zℓ/6] with c1 = 18(12π)maxℓ dℓ−1.
If for each ℓ ∈ [L], the active deterministic condition

min
X̃ℓ∈W

N′
ℓ

ℓ

min
i:xi∈X̃ℓ

r(P(X̃ℓ,−i)) > µ̃(Xℓ)

and the global semi-random condition

max
ℓ,k:k ̸=ℓ

aff(Sℓ,Sk)√
dℓ ∧ dk

≤ (15 log
∑
ℓ∈[L]

r′Zℓ)
−1

are satisfied, then Fed-SC (TSC) clusters X exactly with the
probability at least 1 − 10∑

ℓ∈[L] Zℓ
−

∑
ℓ∈[L](Zℓe

−c(Zℓ−1) +

2Z−2
ℓ ).

The interpretation of Theorem 2 is analogous to that of
Theorem 1 except that Fed-SC (TSC) is guaranteed with
exact clustering. It should be noted that Zℓ is required to
be exponential with respect to dℓ because of the exponential
dependency of c1 as in [10]. This restriction on Zℓ and dℓ
limits the scope of applications especially when dℓ is large
or there are no sufficient devices in federated networks (see
experiments in VI-A). Similar to Fed-SC (TSC), there also
exists a relation between Zℓ and the upper bound of affinity
between subspaces. With the same settings in Corollary 1, we
state this formally in Corollary 2.

Corollary 2. Suppose that dℓ = d and Zℓ = Z ′,∀ℓ ∈ [L].
A set of subspaces {Sℓ}Lℓ=1 satisfy the global semi-random
condition for Fed-SC (TSC) if

max
k:k ̸=ℓ

aff(Sℓ,Sk) ≤
√
d

15 log(Lr′Z ′)
.

Analogue to Corollary 1, the upper bound of the affinity be-
tween subspaces is Ω(

√
d

logZ′ ) for Fed-SC (TSC) and statistical
heterogeneity can relax the upper bounds between subspaces
Sℓ and Sk, k ̸∈ α(ℓ).

4As described in Section III-B, Zℓ and L(z) characterize the data partition
across the federated network, and there is an equivalence between Zℓ and L(z)

established by
∑

z∈[Z] L
(z) =

∑
ℓ∈[L] Zℓ. Thus, the federated network is

also with statistical heterogeneity if Zℓ < Z for some ℓ ∈ [Z].



C. Proof of Main Theorems

In this section, we use Lemmas 1, 2 and 3 to establish the
proof of Theorem 1, and use Lemmas 1, 2 and 4 to establish
the proof of Theorem 2. Specifically, we lay out the steps of
the proof for main theorems as follows.

1) We firstly show that the active deterministic condition
is sufficient for local data to hold the SEP and state this
in Lemma 1.

2) Then, we make use of Lemma 2 stating that the subspace
spanned by the points from a connected component is
identical to one of the subspaces {Sℓ}Lℓ .

3) Finally, the global semi-random conditions are sufficient
for generated samples to hold SEP or exact clustering
and we state this in Lemmas 3 and 4, respectively.

Lemma 1. Let X = [Xℓ]
L
ℓ=1 be the data points drawn from⋃L

ℓ=1 Sℓ and any non-empty subset of local data X
(z)
ℓ ⊆ X(z)

contains at least N ′
ℓ data points in each local device z ∈ [Z].

Let WN
ℓ be the set of the submatrix of Xℓ with N data points.

If for each l ∈ [L],

min
X̃ℓ∈W

N′
ℓ

ℓ

min
i:xi∈X̃ℓ

r(P(X̃ℓ,−i)) > µ̃(Xℓ),

then the local SSC holds SEP for each X(z) in local device
z ∈ [Z].

Proof. From Theorem 2.5 in [17], the sufficient condition on
local data X

(z)
ℓ for SSC to hold SEP is

min
i:xi∈X

(z)
ℓ

r(P(X
(z)
ℓ,−i)) > µ(X

(z)
ℓ ). (6)

Since N ′
ℓ = min{N (z)

ℓ |N (z)
ℓ > 0}z∈[Z], there exists a matrix

X̃ℓ ∈ WN ′
ℓ

ℓ of which the columns are a subset of the columns
of X

(z)
ℓ , X̃ℓ ⊆ X

(z)
ℓ , for any local data X

(z)
ℓ ,∀z ∈ [Z].

min
i:xi∈X

(z)
ℓ

r(P(X
(z)
ℓ,−i)) for each z ∈ [Z]. In summery, for each

ℓ ∈ [L] and z ∈ [Z]

min
X̃ℓ∈W

N′
ℓ

ℓ

min
i:xi∈X̃ℓ

r(P(X̃ℓ,−i)) ≤ min
i:xi∈X

(z)
ℓ

r(P(X
(z)
ℓ,−i)). (7)

On the other hand, the matrix of local projected dual directions
V

(z)
ℓ is a subset of Vℓ, so ∥V (z)

ℓ

T
x∥∞ ≤ ∥V T

ℓ x∥∞,∀x ∈ Rn.
For each ℓ ∈ [L], data points from any subspace indexed by
k, k ̸∈ α(ℓ) is not contained on any local devices. Conversely,
any data point on each device that contains data points
from subspace Sℓ is distributed on either subspace Sℓ or the
subspaces in its active set α(ℓ), that is, X(z) \X(z)

ℓ ⊆ Xα(ℓ).
We then have inequality,

µ̃(Xℓ) = max
x∈Xα(l)

∥V T
ℓ x∥∞ ≥ max

x∈X(z)\X(z)
ℓ

∥V T
ℓ x∥∞

≥ max
x∈X(z)\X(z)

ℓ

∥V (z)
ℓ

T
x∥∞ (8)

= µ(X
(z)
ℓ ). (9)

The combination of equations (7) and (9) concludes the proof.

Lemma 2. If data points X(z) are in general position, non-
zero N

(z)
ℓ ≥ dℓ + 1 and local SSC holds SEP, the subspace

spanned by the points in each connected component of the
local affinity graph is identical to one of the underlying
subspaces {Sℓ}Lℓ .

Proof. Given a affinity graph W(z) built by SSC , suppose
there are K connected components W

(z)
k , k ∈ [K]. By SEP,

the data points are distributed on the same subspace if they
are connected. Hence, there must exist an underlying subspace
Sℓ for each connected component Wk. If X is in general
position and non-zero N

(z)
ℓ ≥ dℓ + 1 then the number of

points in W
(z)
k larger than or equal to dℓ + 1, which can be

concluded by that for each xi ∈ Xℓ, the optimal solution
for optimization problem in SSC is the linear combination of
other linear independent dℓ points. Furthermore, the linearly
independent data points in Vk span the exact subspace Sℓ.

With Lemmas 1 and 2, the estimated subspaces are the same
as the exact underlying subspaces. Recalling the proposed
sampling method in Fed-SC such that the samples Θ generated
from subspaces are uniformly distributed on the unit spheres.
This sampling procedure is consistent with the semi-random
model. Next, we introduce sufficient conditions for Θ to hold
SEP or exact clustering by bounding the number of samples
from each subspace, according to the data partition over the
federated network.

Lemma 3. Let Θ = [Θℓ]
L
ℓ=1 be the data points drawn from⋃L

ℓ=1 Sℓ in semi-random model and Θℓ ∈ Rn×Nℓ with Zℓ ≤
Nℓ ≤ r′Zℓ. If

max
k:k ̸=l

t(log[r′Zℓ(r
′Zk+1)]+logL)

aff(Sℓ,Sk)√
dk

< c

√
log

Zℓ − 1

dℓ

for each ℓ ∈ [L], then SSC holds SEP for Θ with probability
at least 1−

∑L
ℓ=1 Zℓe

−
√
dℓ

√
Zℓ−1 − 1

L2

∑
k ̸=ℓ

e−t/4

Zℓ(Zk+1) .

Proof. Identical to the proof of Lemma 1, this lemma can be
concluded by scaling the inequality of Theorem 2.8 in [17].

By the Lemma 3, we know that the generated samples θ
(z)
t

from the subspace Sℓ are labeled correctly by τ
(z)
t = ℓ with

corresponding high probability. Recalling the local update as
we described in Algorithm 1, local data points from different
subspaces are partitioned into different clusters, then Fed-SC
(SSC) holds SEP for the global data. Thus, We conclude the
proof of Theorem 1.

Lemma 4. Let Θ = [Θℓ]
L
ℓ=1 be the data points drawn

from
⋃L

ℓ=1 Sℓ in semi-random model and Θℓ ∈ Rn×Nℓ with
Zℓ ≤ Nℓ ≤ rZℓ. Suppose TSC chooses parameter q ∈
[c1 log(rmaxℓ Zℓ),minℓ Zℓ/6] with c1 = 18(12π)maxℓ dℓ−1.
If

max
l,k:k ̸=l

aff(Sℓ,Sk)√
dℓ ∧ dk

≤ (15 log
∑
l∈[L]

rZℓ)
−1,



then TSC can correctly cluster the data X with the probability
at least 1− 10∑

ℓ∈[L]
Zℓ −

∑
ℓ∈[L](Zℓe

−c(Zℓ−1) + 2Z−2
ℓ ).

Proof. Identical to the proof of Lemma 1, this lemma can be
concluded by scaling the inequality of Theorem 2 in [10].

Analog to the proof of Theorem 1, local data points from
the same subspace are clustered into the same cluster by
combining the Lemmas 1, 2 and 4. Thus, the Fed-SC (TSC)
can cluster the data on federated networks with corresponding
high probability, which concludes the Theorem 2.

VI. EXPERIMENTS

In this section, we mainly demonstrate the effectiveness of
the proposed Fed-SC method by testing on both synthetic and
real data. All the experiments are performed on a machine with
an Intel Xeon(R) 2.6GHz CPU and 502 GB main memory.
Datasets. We demonstrate the clustering performance of the
proposed Fed-SC on synthetic data and real-world datasets
including Extended MNIST (EMNIST) [46] and Columbia
Object Image Library (COIL100) [47]. The datasets and their
preprocessing steps are outlined as follows:

• We randomly generate L subspaces (adjustable) each of
the same dimension d = 5 by drawing i.i.d. orthonormal
basis matrices in R20. The synthetic data is obtained by
multiplying random gaussian coefficients with each basis
matrix.

• EMNIST contains a set of handwritten character digits,
with 814,255 characters of 62 unbalanced classes. We
resize each image into a size of 32 × 32 and compute
the features by using a scattering convolution network
[48]. Then, we concatenate the features into a 3472-
dimensional vector for each image.

• COIL100 contains 100 different objects each with 72
images taken at different pose intervals. Data augmen-
tations including random brightness and contrast changes
are applied to obtain an augmented dataset with size
over 60, 000. We further convert the augmented images
into gray-scale, resize them to the size of 32 × 32, and
concatenate the pixels of each processed image into a
vector with dimension 1024.

In the following experiments, we set up Z devices and
randomly distribute the data among Z devices such that each
device z receives data points from L′ ≤ L clusters.
Baselines and implementation details. We use state-of-
the-art centralized SC and FC methods as baselines. The
centralized methods includes: SSC [9], NSN [27], TSC [10],
SSCOMP [42] and EnSC [26]. The state-of-the-art one-shot
federated clustering method is k-FED [1].

We implement the Lasso optimization algorithm of SSC
with the sparse modeling software (SPAMS) [49] instead of the
Alternating Direction Method of Multipliers (ADMM) [50].
The parameter λ of the optimization for xi is determined
by λ = maxj ̸=i |xT

j xi|/50, as presented in Proposition 1 of
[9]. We set q = max(3, ⌈Z/L⌉) for the TSC implementation
in the Fed-SC (TSC) scheme and max(3, ⌈N/100L⌉) for

the centralized TSC algorithm. In the proposed federated
scheme, Fed-SC, we take the upper bound of r(z) with
r(z) = maxz∈[Z] L

(z) and target dimension dt = 1 for the
experiments of real-world datasets. For the greedy baseline
algorithms NSN and orthogonal matching pursuit (OMP)
[42], we use the faster implementation for NSN [27] and an
optimized OMP for SC [42], respectively. Moreover, we use
the scalable oracle-based active set methods for EnSC [26].
The affinity matrices built by all the above algorithms are
stored as sparse matrices, which can be efficiently computed.
Evaluation metrics and methodology. All algorithms are
evaluated by the clustering accuracy (ACC: a%) [42] and
normalized mutual information (NMI: n%) [51]. ACC is
computed by finding the best label alignment of clustering
result over all possible permutations as follows,

a = max
π

100

N

∑
i∈[L],j∈[N ]

Q̃π(i),jQi,j (10)

where Q, Q̃ ∈ {0, 1}L×N are the ground-truth and estimated
data labeling matrices, respectively, and π(·) is the permutation
of L clusters. NMI evaluates the certainty of clustering results
about the ground-truth class labels with a scale between 0 and
100 in percentage. It is calculated by:

n = 100
2MI(Q̃;Q)

H(Q̃) + H(Q)
(11)

where H(·) and MI(·; ·) denote the entropy and mutual infor-
mation between two label assignments, respectively.

In addition, the connectivity of the affinity graph is eval-
uated. Let λ

(i)
l denote the i-th eigenvalue of the normalized

affinity graph Laplacian corresponding to Sℓ. The metrics of
connectivity (CONN: c) is computed by c = min{λ(2)

l }ℓ∈L

and the average quantity c̄ = 1
L

∑
l∈[L] λ

(2)
l [52]. For the

efficiency evaluation of federated schemes, the running time
T is measured by T =

∑
z∈[Z] T(z) + Tc where T(z) is the

running time on client device z and Tc is the time on the
central server.

Evaluation is first conducted on synthetic data with more
control of data distributions to exhibit multifaceted compar-
isons. Then, we empirically evaluate the effectiveness and
efficiency of Fed-SC on real-world datasets. Both evaluations
have practically witnessed the benefit of statistical heterogene-
ity that boosts the clustering performance.

A. Evaluation on Synthetic Data

Effectiveness of Fed-SC. We evaluate the clustering perfor-
mance of Fed-SC and k-FED on data from two different
partitions among Z devices: 1) random IID partitions by
setting L′ = L = 20, denoted as IID, and 2) non-IID partitions
by setting L′ ∈ {2, 10}, denoted as Non-IID-2 and Non-IID-
10, respectively. By varying Z in a wide range of 200 to 2000,
the clustering results of Fed-SC (SSC), Fed-SC (TSC), and k-
FED are depicted in Fig. 4. We observe that both Fed-SC
(SSC) and Fed-SC (TSC) outperform k-FED in accuracy and
normalized mutual information with a significant increase. As
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Fig. 4. The clustering accuracy and normalized mutual information of
federated clustering methods, Fed-SC (SSC), Fed-SC (TSC), and k-FED, as
functions of the number of devices with the different fashion of data partition.
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Fig. 5. The clustering accuracy of Fed-SC (SSC) and Fed-SC (TSC) as
functions of L′/L and the number of subspaces L. Brighter cells represent
higher accuracy of clustering.

we discussed in Theorem 2, the requirement of the large value
of Zℓ degrades the clustering performance when the value Z is
small but eventually has the same good performance as Fed-
SC (SSC). Besides, we note that all the federated methods
achieve better performance for non-IID data, which verifies
the benefits of heterogeneity.

To further demonstrate the benefits of heterogeneity for Fed-
SC, we set Z = 400 and conduct the experiments by varying
the number of subspaces L and the ratio of L′ to L. The
corresponding results of Fed-SC (SSC) and Fed-SC (TSC) are
depicted in Fig. 5. We observe that the accuracy of decreases
as the values of L′/L and L get larger. For Fed-SC (TSC),
the very small L′ badly affects the accuracy because TSC
requires a sufficient number of samples as we discussed in
Theorem 2. Even still, the obvious decrease in accuracy of
Fed-SC (TSC) still exists in the range from 0.3 to 1.0 for
L′/L. The experimental results demonstrate that Fed-SC can
achieve better performance if L′ ≪ L, verifying the benefits
of heterogeneity.

We also focus on comparing Fed-SC’s performance with
the centralized SC methods in statistically heterogeneous
federated networks. Specifically, we set L = 50 (a middle
value from the previous experiment in Fig. 5) and L′ = 3
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SC algorithms on synthetic data.
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Fig. 7. The clustering accuracy of Fed-SC (SSC) and Fed-SC (TSC) as
functions of δ and the number of devices Z. Brighter cells represent higher
accuracy of clustering.

to ensure heterogeneity (L′ ≪ L). Fig. 6 illustrates each
metric of evaluated methods as a function of Z. It can be seen
that Fed-SC (SSC) achieves leading accuracy compared with
centralized methods and Fed-SC (TSC) gets higher accuracy
with a growth of Z. Meanwhile, the result shows that Fed-
SC improves connectivity compared to centralized SSC and
TSC methods. This is because the affinity graph on generated
samples Θ can induce a denser global affinity graph on X.
Efficiency of Fed-SC. As depicted in the last plot of Fig. 6,
Fed-SC can significantly reduce the time cost compared to the
centralized SC methods, especially when the number of local
devices Z is large. This corresponds to the scalability analysis
in Section IV-E, the sequential runtime of Fed-SC reduces
from O(Z2N2) of centralized algorithms to O(ZN2 + Z2),
where N is the number of local data points.
Robustness to communication noise. We next study the
robustness of the proposed Fed-SC to communication noise.
On each device z, the generated samples Θ(z) are subjected



TABLE III
PERFORMANCE COMPARISON ON EMNIST AND CIFAR-10 WHERE ‘-’

DENOTES THE METRIC CANNOT BE COMPUTED PROPERLY. *: THE
RUNNING TIME OF SSC FOR EMNIST EXCEEDS THE TIME LIMIT OF 1

DAY.

EMNIST (2 ≤ L(z) ≤ 4, z ∈ [Z])

Methds ACC(a%) NMI(n%) CONN(c̄) T(sec.)

Fed-SC (SSC) 85.77 88.28 0.0019 262.83
Fed-SC (TSC) 86.17 87.00 0.0186 237.31
k-FED 56.68 67.18 - 16.00
k-FED + PCA-10 11.47 31.23 - 7.95
k-FED + PCA-100 11.64 31.28 - 16.18

SSC* - - - -
SSCOMP 56.17 70.26 0.000 12943.46
EnSC 60.83 74.00 0.0317 29459.42
TSC 49.04 66.92 0.0131 2511.73
NSN 41.68 63.82 0.1571 8117.37

Augmented COIL100 (2 ≤ L(z) ≤ 4, z ∈ [Z])

Methds ACC(a%) NMI(n%) CONN(c̄) T(sec.)

Fed-SC (SSC) 74.43 85.09 0.0104 96.65
Fed-SC (TSC) 57.54 75.24 0.0579 78.12
k-FED 31.52 52.05 - 3.03
k-FED + PCA-10 8.59 26.18 - 1.44
k-FED + PCA-100 8.43 26.44 - 3.64

SSC 45.25 71.93 0.0006 31676.33
SSCOMP 41.17 68.26 0.0118 1616.64
EnSC 51.55 76.91 0.0324 3842.41
TSC 53.06 78.99 0.1859 809.27
NSN 30.46 46.97 0.4280 1765.18

to the Gaussian noise with variance δ√
r(z)

to simulate the
communication noise. We vary δ and the number of devices
Z. The result, depicted in Fig. 7, shows that Fed-SC is robust
to communication noise.

B. Empirical Evaluation on Real World Datasets

In this section, we empirically evaluate the clustering per-
formance of Fed-SC for high-dimensional real-world datasets
over heterogeneous federated networks. We set up Z = 400
devices in a federated network and distribute the data points
among the devices such that each device z only receives
data from a random subset of 2 ≤ L(z) ≤ 4 clusters with
N (z) ≤ 400 for each z ∈ [Z]. Note that k-means based FC k-
FED conventionally underperforms for high-dimensional data,
we project the local high-dimensional data to dimensions 10
and 100 by PCA, denoted as PCA-10 and PCA-100, respec-
tively. The performance of evaluated methods on EMNIST and
augmented COIL100 is reported in Table III.
Effectiveness of Fed-SC. We can observe the leading clus-
tering performance and the improvement on the connectivity
of the affinity graph of Fed-SC (SSC) and Fed-SC (TSC).
Besides, the performance of k-FED and that with PCA is
worse than our methods. This is because the dimension of local
data residing on each device is much higher than the number
of data points. The k-means based methods and dimensionality
reduction techniques are invalid for high-dimensional data.
Furthermore, the proposed Fed-SC significantly improves the
clustering accuracy by roughly 30% and 20% over the cen-

TABLE IV
CLUSTERING ACCURACIES (a%) WITH DIFFERENT NUMBER OF LOCAL

CLUSTERS L′

EMNIST

L′ 2 4 6 8 10

Fed-SC (SSC) 88.96 82.74 75.58 72.66 69.76
Fed-SC (TSC) 86.03 81.37 71.95 69.24 65.57

k-FED 67.70 57.25 46.56 38.19 25.29
k-FED + PCA-10 13.41 9.02 7.62 7.82 7.14
k-FED + PCA-100 13.13 9.39 7.93 7.61 7.19

Augmented COIL100

L′ 2 4 6 8 10

Fed-SC (SSC) 82.07 72.44 49.15 45.83 39.31
Fed-SC (TSC) 75.33 66.54 47.99 44.48 38.09

k-FED 37.08 25.56 19.60 19.12 17.88
k-FED + PCA-10 10.78 7.01 5.40 5.56 5.61
k-FED + PCA-100 11.40 7.08 5.54 5.84 5.47

tralized SC methods on EMNIST and augmented COIL100,
respectively. The federated scheme can even boost the perfor-
mance of central SC methods because Fed-SC can effectively
utilize the benefits of heterogeneity. Specifically, due to each
device containing data only from a very small set of clusters,
it would be much easier to correctly cluster the local data
for each device. To verify this insight, we further empirically
explore the benefits of statistical heterogeneity for federated
clustering on real-world datasets.

We distribute data among Z devices such that each de-
vice receives data from a random subset of L′ clusters. By
varying L′ ∈ {2, 4, 6, 8, 10}, the clustering performance of
the evaluated FC methods are listed in Table IV. We can
observe a gradual performance degradation as L′ increases
and the performance of Fed-SC is even worse than centralized
SC methods when L′ = 10. This verifies that statistical
heterogeneity can substantially benefit federated clustering.
Efficiency of Fed-SC. Table III shows that even the most
efficient centralized algorithms, TSC and SSCOMP, require
computation time about dozens times of that of Fed-SC.
Although Fed-SC takes more running time than k-FED, it is
still an efficient federated SC scheme, especially when the
number of devices is large. This qualifies Fed-SC for large-
scale real-world datasets.

VII. CONCLUSION

In this work, we investigated federated clustering for high-
dimensional data and proposed the solution of one-shot feder-
ated subspace clustering, namely Fed-SC. Fed-SC first enables
the effective clustering of high-dimensional data in a federated
regime. The effectiveness of Fed-SC is theoretically guaran-
teed especially with the benefit of statistical heterogeneity.
Extensive experiments have been conducted to verify its ef-
fectiveness and efficiency. The promising future directions are
to theoretically guarantee privacy-preserving and to consider
privacy-utility tradeoffs in federated clustering.



REFERENCES

[1] D. K. Dennis, T. Li, and V. Smith, “Heterogeneity for the win: One-shot
federated clustering,” in International Conference on Machine Learning.
PMLR, 2021, pp. 2611–2620.

[2] J. Chung, K. Lee, and K. Ramchandran, “Federated unsupervised clus-
tering with generative models,” in International Workshop on Trustable,
Verifiable and Auditable Federated Learning, 2022.

[3] B. van Berlo, A. Saeed, and T. Ozcelebi, “Towards federated unsuper-
vised representation learning,” in ACM International Workshop on Edge
Systems, Analytics and Networking, 2020, pp. 31–36.

[4] F. Zhang, K. Kuang, Z. You, T. Shen, J. Xiao, Y. Zhang, C. Wu,
Y. Zhuang, and X. Li, “Federated unsupervised representation learning,”
arXiv preprint arXiv:2010.08982, 2020.

[5] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y. Arcas,
“Communication-Efficient Learning of Deep Networks from Decentral-
ized Data,” in International Conference on Artificial Intelligence and
Statistics, vol. 54, 2017, pp. 1273–1282.

[6] M. G. Blum, L. Valeri, O. François, S. Cadiou, V. Siroux, J. Lepeule, and
R. Slama, “Challenges raised by mediation analysis in a high-dimension
setting,” Environmental Health Perspectives, vol. 128, no. 5, p. 055001,
2020.

[7] K. T. Le, C. Chaux, F. J. Richard, and E. Guedj, “An adapted linear
discriminant analysis with variable selection for the classification in
high-dimension, and an application to medical data,” Computational
Statistics & Data Analysis, vol. 152, p. 107031, 2020.

[8] R. Vento-Tormo, M. Efremova, R. A. Botting, M. Y. Turco, M. Vento-
Tormo, K. B. Meyer, J.-E. Park, E. Stephenson, K. Polański,
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