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1 Introduction

Introduction: Federated Learning

e Decentralized approach to ML
e Cooperative training without sharing raw data

e Widely applicable in supervised ML models
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Introduction: Federated Clustering

e k-means based one-shot federated clustering:
k-FED.

e Practical applications: clustering medical,
image, or genomics data resided at different
nodes.

D. K. Dennis, T. Li, and V. Smith, “Heterogeneity for the win: One-shot federated clustering,” in International
Conference on Machine Learning. PMLR, 2021, pp. 2611-2620.

Songjie Xie | Fed-SC: One-Shot Federated Subspace Clustering over High-Dimensional Data 4/19



Introduction: Subspace Clustering

In many applications, high-dimensional data can be well represented by a union of
low-dimensional subspaces.

.

OSJ

E. Elhamifar and R. Vidal, “Sparse subspace clustering: Algorithm, theory, and applications," IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 35, no. 11, pp. 2765-2781, 2013.
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Motivation and Challenge — Federated Learning meets Subspace
Clustering

e Lack of previous studies on federated clustering for high-dimensional data.
e Unique requirements of federated learning

— Communication efficiency

— Privacy-preserving: learning without sharing data
e Effectiveness of subspace clustering

— Empirical performance on real-world high-dimensional datasets

— Theoretical guarantee
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2 Problem Formulation
Centralized Subspace Clustering
1. Constructing an affinity graph W € R"*"

e Sparse Subspace Clustering (55C): W = |C|+|C|?, C = [cy, Ca, . . ., Cn],

freller]lvfllXcz xill3 + llcilli, st e =0.

e Thresholding-based subspace clustering (TSC): calculate and threshold
the cosine distances between data points

2. Applying spectral clustering on W to generate L clusters
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Federated Subspace Clustering

Given data X residing in a federated network with Z devices, federated SC aims
to cluster X into L classes according to the global subspaces {S;}%_; they lie.

Statistical heterogeneity: there exists at least one device z such that the
number of local clusters is smaller than the number of total clusters, L(*) < L.

X = [x<z)];1 X X@ X® X@

LS 15 P 18 ) 15
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3 Method: Fed-SC

Main Steps:

e Local clustering and sampling Y |
WA

e Central clustering A A

e Local update Server

Step 1: Local clustering

Step 2: Central clusterin%
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Fed-SC: Local Clustering and Sampling
Local clustering (at device z): Random sampling:
1. Run SSC on X to obtain 1. Estimate the orthogonal basis Ui)

C®) and form an affinity graph

WG = |CE)| + |c)T 2. Sample the coefficient aﬁz) ~ N(0,1),

and generate ng) = Span({XZ(Z)}

from data points in 7).

2. Use eigengap heuristic to esti- z’esz))

mate the number of clusters () by U)ol

3. Apply spectral clustering to seg- §Z) - ||U§t)at(z)||g'
ment local data points into r(?) t
clusters T) = (T,));] o = (6,05, ...,

Songjie Xie | Fed-SC: One-Shot Federated Subspace Clustering over High-Dimensional Data 10/19



Fed-SC: Central Clustering and Local Update

Step 1: Local clustering

e Central clustering: The server runs

_ 01 oooodO

SC algorithms (TSC or SSC) to seg- Tl
Step 2: Central clustering

ment [@)]Z_, into L clusters — / A
- . A e Device 2

e Local update: Each client z updates | o & o T | EEEEAA

: T _ L DT i

T into T = (1,7 by Server ‘—\ SIS AVATAVA

TZ(Z) == {Z . Z G CZ—;':(Z) and Tt(z) - g} Step 3: Local update ..AAAA o

Fed-SC (S5C) and Fed-SC (TSC) to denote the Fed-SC methods where SSC and
TSC are implemented at the central server, respectively.

Songjie Xie | Fed-SC: One-Shot Federated Subspace Clustering over High-Dimensional Data 11/19



4 Effectiveness Guarantees
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Local clustering: Active Deterministic Condition

Assume that each X(*) is in general position and the non-zero
N >d;+1forall £ € [L] and z € [Z]. Let ' = max,epz 7,
N} = min{N?|N}? > 0}.e(z and W2 be the set of all sub-
matrices of X, with N, columns. If for each ¢ € [L], The active
deterministic condition

min  min r(P(X,_;)) > ji(X,), for each £ € [L]

~ N/ o,
XZEWg 0 x;€Xy
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Central clustering: Global Semi-random Condition

Zy: Number of subspaces where the local data X(*) is distributed, d;:Dimension of subspace Sp.

e Fed-SC (SSC):

Zy—1 e aft(Sy, Sk)
cy|log i > max tlog[Lr' Z(r Zk—i—l)]T

o Fed-SC (TSC):

aﬂ(8€78k> / 1
OOk < (151 Z
Gkt Jdg A dy = Og%i]r 2
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5 Experiments

e Datasets: EMNIST and Augmented

We set up Z devices and randomly distribute the data
COIL100.

among Z devices such that each device z receives
data points from L’ < L clusters. e Evaluation metrics: All algorithms are

evaluated by the clustering accuracy (ACC:
a%), normalized mutual information (NMI:
n%), connectivity of the affinity graph
(CONN: ¢), and running time.

e Baseline: The centralized methods include
SSC, NSN, TSC, SSCOMP, and EnSC. The
state-of-the-art one-shot federated clustering
method is k-FED.
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Evaluation on Synthetic Data
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Empirical Evaluation on Real World Datasets

TABLE IIT
PERFORMANCE COMPARISON ON EMNIST AND CIFAR-10 WHERE ‘-’
DENOTES THE METRIC CANNOT BE COMPUTED PROPERLY. *: THE
RUNNING TIME OF SSC FOR EMNIST EXCEEDS THE TIME LIMIT OF 1 TABLE IV

DAY. CLUSTERING ACCURACIES (a%) WITH DIFFERENT NUMBER OF LOCAL
CLUSTERS L/

EMNIST (2 < L® < 4,z € [Z])
Methds ACC(a%) NMI(n%) CONN(@)  T(sec.)

EMNIST
Fed-SC (SSC) 85.77 8828 00019 26283
Fed-SC (TSC) 8617 8700 00186 23731 j % | 2 4 6 8 10
k-FED 56.68 67.18 - 16.00
k-FED + PCA-10 11.47 31.23 - 7.95 Fed-SC (SSC) 88.96 82.74 75.58 72.66 69.76
’S“'SFC‘iD*PCA"O‘) 16 3128 - 16.18 Fed-SC (TSC) | 86.03 8137 7195 69.24 65.57
SSCOMP 56.17 7026 0000 1294346 k-FED 6770 57.25 4656 38.19 2529
EnSC 60.83 74.00 0.0317  29459.42 k-FED + PCA-10 | 1341 9.02 7.62 7.82 7.14
TSC 49.04 66.92 0.0131 2511.73 k-FED + PCA-100 | 13.13 9.39 7.93 7.61 7.19
NSN 41.68 6382 01571 811737
Augmented COIL100 (2 < L) < 4,z € [Z]) Augmented COIL100
Methds ACC(a%) NMI(n%) CONN(@)  T(sec.) L ‘ 2 4 6 8 10
Fed-SC (SSC) 7443 8509 00104 9665
F:d-SC (TSC) 57.54 7504 0.0579 78.12 Fed-SC (SSC) 82.07 7244 49.15 4583 39.31
t-igg PeAI 3;5? gé?g - % Fed-SC (TSC) 7533 66.54 47.99 4448 38.09
"FED + PCA- ) : . ;
e 2 H B i | S T8 08 O3
Sscomp 0D wae oons e k-FED + PCA-100 | 1140 7.08 554 584 547
EnSC 5155 7691 00324 384241
SC 53.06 7899 01859  809.27
NSN 30.46 4697 04280  1765.18
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6 Conclusion and Future Work

e We investigated federated clustering for high-dimensional data and proposed
the solution of one-shot federated subspace clustering.

e We theoretically and empirically guarantee the effectiveness of federated
schemes for subspace clustering, especially with the benefit of statistical
heterogeneity.

e The promising future directions are to theoretically guarantee privacy-preserving
and to consider privacy-utility tradeoffs in federated clustering.
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