Fed-SC: One-Shot Federated Subspace Clustering over High-Dimensional Data

 $\mathsf{Songjie\ Xie^1}$, Youlong Wu¹, Kenwen Liao², Lu Chen³, Chengfei Liu³, Haifeng Shen², MingJian Tang^4 , Lu Sun^1

¹ShanghaiTech University, ²Australian Catholic University, ³Swinburne University of Technology, ⁴Atlassian

Apr 4, 2023

Outline

1 Introduction

- **2 Problem Formulation**
- **3 Method: Fed-SC**
- **4 Effectiveness Guarantees**
- **5 Experiments**
- **6 Conclusion and Future Work**

1 Introduction

Introduction: Federated Learning

- Decentralized approach to ML
- Cooperative training without sharing raw data
- Widely applicable in supervised ML models

Introduction: Federated Clustering

- *k*-means based one-shot federated clustering: *k*-FED.
- **Practical applications**: clustering medical, image, or genomics data resided at different nodes.

D. K. Dennis, T. Li, and V. Smith, "Heterogeneity for the win: One-shot federated clustering," in International Conference on Machine Learning. PMLR, 2021, pp. 2611-2620.

Introduction: Subspace Clustering

In many applications, high-dimensional data can be well represented by a union of low-dimensional subspaces.

E. Elhamifar and R. Vidal, "Sparse subspace clustering: Algorithm, theory, and applications," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 11, pp. 2765-2781, 2013.

Motivation and Challenge – Federated Learning meets Subspace Clustering

- Lack of previous studies on federated clustering for high-dimensional data.
- Unique requirements of federated learning
	- **–** Communication efficiency
	- **–** Privacy-preserving: learning without sharing data
- Effectiveness of subspace clustering
	- **–** Empirical performance on real-world high-dimensional datasets
	- **–** Theoretical guarantee

2 Problem Formulation

Centralized Subspace Clustering

- 1. Constructing an affinity graph $\mathbf{W} \in \mathbb{R}^{n \times n}$
	- \bullet Sparse Subspace Clustering (SSC): $\mathbf{W} = |\mathbf{C}| + |\mathbf{C}|^T$, $\mathbf{C} = [\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_N]$,

$$
\min_{\mathbf{c}_i \in \mathbb{R}^N} \frac{\lambda}{2} \|\mathbf{X}\mathbf{c}_i - \mathbf{x}_i\|_2^2 + \|\mathbf{c}_i\|_1, \quad \text{s.t.} \quad c_{ii} = 0.
$$

- Thresholding-based subspace clustering (TSC): calculate and threshold the cosine distances between data points
- 2. Applying spectral clustering on **W** to generate *L* clusters

Federated Subspace Clustering

Given data **X** residing in a federated network with *Z* devices, federated SC aims to cluster ${\bf X}$ into L classes according to the global subspaces $\{\mathcal{S}_{\ell}\}_{\ell=1}^L$ they lie.

Statistical heterogeneity: there exists at least one device *z* such that the number of local clusters is smaller than the number of total clusters, $L^{(z)} < L_{\cdot}$

3 Method: Fed-SC

Main Steps:

- Local clustering and sampling
- Central clustering
- Local update

Step 1: Local clustering

Fed-SC: Local Clustering and Sampling

Local clustering (at device *z*):

- 1. Run SSC on $\mathbf{X}^{(z)}$ to obtain **C**(*z*) and form an affinity graph $\mathbf{W}^{(z)} = |\mathbf{C}^{(z)}| + |\mathbf{C}^{(z)}|^T$
- 2. Use eigengap heuristic to estimate the number of clusters $r^{(z)}$
- 3. Apply spectral clustering to segment local data points into $r^{(z)}$ ${\sf clusters}\; T^{(z)} = (T_i^{(z)})$ $\binom{r(z)}{i}$ *t*=1

Random sampling:

- 1. Estimate the orthogonal basis $\mathbf{U}_{d_{t}}^{(z)}$ *dt* from data points in $T_t^{(z)}$ *t* .
- 2. Sample the coefficient $\boldsymbol{\alpha}^{(z)}_t \sim \mathcal{N}(\mathbf{0}, \mathbf{I}),$ and generate $\boldsymbol{\theta}_t^{(z)} \in \mathsf{span}(\{\mathbf{x}_i^{(z)}\}_{i \in T_t^{(z)}})$ by

$$
\boldsymbol{\theta}_t^{(z)} = \frac{\mathbf{U}_{d_t}^{(z)} \boldsymbol{\alpha}_t^{(z)}}{\|\mathbf{U}_{d_t}^{(z)} \boldsymbol{\alpha}_t^{(z)}\|_2}.
$$

$$
\boldsymbol{\Theta}^{(z)} = [\boldsymbol{\theta}_1^{(z)}, \boldsymbol{\theta}_2^{(z)}, \ldots, \boldsymbol{\theta}_{r^{(z)}}^{(z)}]
$$

Fed-SC: Central Clustering and Local Update

- Central clustering: The server runs SC algorithms (TSC or SSC) to seg- $\mathsf{ment}\ [{\bf \Theta}^{(z)}]_{z=1}^Z$ into L clusters
- Local update: Each client *z* updates $T^{(z)}$ into $\hat T^{(z)} = (\hat T^{(z)}_\ell$ $\ell^{(z)}_{\ell}$) $_{\ell=1}^L$ by $\hat{T}_{\ell}^{(z)} = \{i : i \in T_{t}^{(z)} \text{ and } \tau_{t}^{(z)} = \ell\}$

Fed-SC (SSC) and Fed-SC (TSC) to denote the Fed-SC methods where SSC and TSC are implemented at the central server, respectively.

4 Effectiveness Guarantees

Songjie Xie **|** Fed-SC: One-Shot Federated Subspace Clustering over High-Dimensional Data 12/19

Local clustering: Active Deterministic Condition

Assume that each $\mathbf{X}^{(z)}$ is in general position and the non-zero $N_{\ell}^{(z)} \geq d_{\ell} + 1$ for all $\ell \in [L]$ and $z \in [Z].$ Let $r' = \max_{z \in [Z]} r^{(z)}$, $N'_\ell = \min\{N^{(z)}_\ell$ $\mathbb{E}^{(z)}_\ell | N^{(z)}_\ell > 0 \}_{z \in [Z]}$ and $\mathbb{W}^{N'_\ell}_\ell$ be the set of all submatrices of X_ℓ with N'_ℓ columns. If for each $\ell \in [L]$, The active deterministic condition min $\tilde{\mathbf{X}}_\ell \! \in \! \mathbb{W}^{N'_\ell}_\ell$ min i : x_i ∈ $\tilde{\mathbf{X}}_\ell$ $r(\mathcal{P}(\tilde{\mathbf{X}}_{\ell,-i})) > \tilde{\mu}(\mathbf{X}_{\ell}), \,\, \text{for each} \,\, \ell \in [L]$

 Songjie Xie
$$
|
$$
 Fed-SC: One-Short Federated Subspace Clustering over High-Dimensional Data

\n13/19

Central clustering: Global Semi-random Condition

- Z_ℓ : Number of subspaces where the local data $\mathbf{X}^{(z)}$ is distributed, d_ℓ :Dimension of subspace \mathcal{S}_ℓ .
- Fed-SC (SSC):

$$
c\sqrt{\log \frac{Z_\ell-1}{d_\ell}} > \max_{k:k\neq l} t \log[Lr'Z_\ell(r'Z_k+1)] \frac{\text{aff}(\mathcal{S}_\ell,\mathcal{S}_k)}{\sqrt{d_k}}
$$

• Fed-SC (TSC):

$$
\max_{\ell, k: k \neq \ell} \frac{\operatorname{aff}(\mathcal{S}_{\ell}, \mathcal{S}_{k})}{\sqrt{d_{\ell} \wedge d_{k}}} \leq (15 \log \sum_{\ell \in [L]} r' Z_{\ell})^{-1}
$$

Songjie Xie **|** Fed-SC: One-Shot Federated Subspace Clustering over High-Dimensional Data 14/19

5 Experiments

We set up *Z* devices and randomly distribute the data among *Z* devices such that each device *z* receives data points from $L' \leq L$ clusters.

• **Baseline**: The centralized methods include SSC, NSN, TSC, SSCOMP, and EnSC. The state-of-the-art one-shot federated clustering method is *k*-FED.

- **Datasets**: EMNIST and Augmented COIL100.
- **Evaluation metrics**: All algorithms are evaluated by the clustering accuracy (ACC: *a*%), normalized mutual information (NMI: *n*%), connectivity of the affinity graph (CONN: *c*), and running time.

Evaluation on Synthetic Data

Songjie Xie **|** Fed-SC: One-Shot Federated Subspace Clustering over High-Dimensional Data 16/19

Empirical Evaluation on Real World Datasets

TABLE III PERFORMANCE COMPARISON ON EMNIST AND CIFAR-10 WHERE '-' DENOTES THE METRIC CANNOT BE COMPUTED PROPERLY. *: THE RUNNING TIME OF SSC FOR EMNIST EXCEEDS THE TIME LIMIT OF 1 DAY.

TABLE IV CLUSTERING ACCURACIES $(a\%)$ with different number of local CLUSTERS L'

EMNIST					
L'	\overline{c}	4	6	8	10
Fed-SC (SSC)	88.96	82.74	75.58	72.66	69.76
Fed-SC (TSC)	86.03	81.37	71.95	69.24	65.57
k -FED	67.70	57.25	46.56	38.19	25.29
k -FED + PCA-10	13.41	9.02	7.62	7.82	7.14
k -FED + PCA-100	13.13	9.39	7.93	7.61	7.19
Augmented COIL100					
L'	2	4	6	8	10
Fed-SC (SSC)	82.07	72.44	49.15	45.83	39.31
Fed-SC (TSC)	75.33	66.54	47.99	44.48	38.09
k -FED	37.08	25.56	19.60	19.12	17.88
k -FED + PCA-10	10.78	7.01	5.40	5.56	5.61
k -FED + PCA-100	11.40	7.08	5.54	5.84	5.47

6 Conclusion and Future Work

- We investigated federated clustering for high-dimensional data and proposed the solution of one-shot federated subspace clustering.
- We theoretically and empirically guarantee the effectiveness of federated schemes for subspace clustering, especially with the benefit of statistical heterogeneity.
- The promising future directions are to theoretically guarantee privacy-preserving and to consider privacy-utility tradeoffs in federated clustering.

Thank you