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1 Introduction

Introduction: Federated Learning

• Decentralized approach to ML

• Cooperative training without sharing raw data

• Widely applicable in supervised ML models

Method: 
Fed-SC
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Introduction: Federated Clustering

• k-means based one-shot federated clustering:
k-FED.

• Practical applications: clustering medical,
image, or genomics data resided at different
nodes.

D. K. Dennis, T. Li, and V. Smith, “Heterogeneity for the win: One-shot federated clustering,” in International
Conference on Machine Learning. PMLR, 2021, pp. 2611-2620.
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Introduction: Subspace Clustering
In many applications, high-dimensional data can be well represented by a union of
low-dimensional subspaces.

E. Elhamifar and R. Vidal, “Sparse subspace clustering: Algorithm, theory, and applications," IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 35, no. 11, pp. 2765-2781, 2013.
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Motivation and Challenge – Federated Learning meets Subspace
Clustering

• Lack of previous studies on federated clustering for high-dimensional data.

• Unique requirements of federated learning

– Communication efficiency

– Privacy-preserving: learning without sharing data

• Effectiveness of subspace clustering

– Empirical performance on real-world high-dimensional datasets

– Theoretical guarantee
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2 Problem Formulation

Centralized Subspace Clustering

1. Constructing an affinity graph W ∈ Rn×n

• Sparse Subspace Clustering (SSC): W = |C|+|C|T , C = [c1, c2, . . . , cN ],

min
ci∈RN

λ

2‖Xci − xi‖2
2 + ‖ci‖1, s.t. cii = 0.

• Thresholding-based subspace clustering (TSC): calculate and threshold
the cosine distances between data points

2. Applying spectral clustering on W to generate L clusters
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Federated Subspace Clustering

Given data X residing in a federated network with Z devices, federated SC aims
to cluster X into L classes according to the global subspaces {S`}L

`=1 they lie.

Statistical heterogeneity: there exists at least one device z such that the
number of local clusters is smaller than the number of total clusters, L(z) < L.

! = ! #
#$%
& ! % ! ' ! ( ! &

Songjie Xie | Fed-SC: One-Shot Federated Subspace Clustering over High-Dimensional Data 8/19



3 Method: Fed-SC

Main Steps:

• Local clustering and sampling

• Central clustering

• Local update

Device 1

Device 2

Device Z

Server

Step 1: Local clustering

Step 2: Central clustering

Step 3: Local update
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Fed-SC: Local Clustering and Sampling

Local clustering (at device z):

1. Run SSC on X(z) to obtain
C(z) and form an affinity graph
W(z) = |C(z)|+ |C(z)|T

2. Use eigengap heuristic to esti-
mate the number of clusters r(z)

3. Apply spectral clustering to seg-
ment local data points into r(z)

clusters T (z) = (T (z)
i )r(z)

t=1

Random sampling:

1. Estimate the orthogonal basis U(z)
dt

from data points in T (z)
t .

2. Sample the coefficient α
(z)
t ∼ N (0, I),

and generate θ
(z)
t ∈ span({x(z)

i }i∈T
(z)
t

)
by

θ
(z)
t =

U(z)
dt

α
(z)
t

‖U(z)
dt

α
(z)
t ‖2

.

Θ(z) = [θ(z)
1 ,θ

(z)
2 , . . . ,θ

(z)
r(z)]
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Fed-SC: Central Clustering and Local Update

• Central clustering: The server runs
SC algorithms (TSC or SSC) to seg-
ment [Θ(z)]Zz=1 into L clusters

• Local update: Each client z updates
T (z) into T̂ (z) = (T̂ (z)

` )L
`=1 by

T̂
(z)
` = {i : i ∈ T (z)

t and τ (z)
t = `}

Device 1

Device 2

Device Z

Server

Step 1: Local clustering

Step 2: Central clustering

Step 3: Local update

Fed-SC (SSC) and Fed-SC (TSC) to denote the Fed-SC methods where SSC and
TSC are implemented at the central server, respectively.
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4 Effectiveness Guarantees

Central Clustering Local Clustering
Data % &(")

Data model Semi-random model Deterministic model
Algorithm SSC/TSC SSC

Criteria SEP/Exacting Clustering SEP
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Local clustering: Active Deterministic Condition

Assume that each X(z) is in general position and the non-zero
N

(z)
` ≥ d` + 1 for all ` ∈ [L] and z ∈ [Z]. Let r′ = maxz∈[Z] r

(z),
N ′` = min{N (z)

` |N
(z)
` > 0}z∈[Z] and WN ′

`
` be the set of all sub-

matrices of X` with N ′` columns. If for each ` ∈ [L], The active
deterministic condition

min
X̃`∈W

N ′
`

`

min
i:xi∈X̃`

r(P(X̃`,−i)) > µ̃(X`), for each ` ∈ [L]
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Central clustering: Global Semi-random Condition

Z`: Number of subspaces where the local data X(z) is distributed, d`:Dimension of subspace S`.

• Fed-SC (SSC):

c

√√√√log Z`−1
d`

> max
k:k 6=l

t log[Lr′Z`(r′Zk+1)]aff(S`,Sk)√
dk

• Fed-SC (TSC):

max
`,k:k 6=`

aff(S`,Sk)√
d` ∧ dk

≤ (15 log
∑

`∈[L]
r′Z`)−1
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5 Experiments

We set up Z devices and randomly distribute the data
among Z devices such that each device z receives
data points from L′ ≤ L clusters.

• Baseline: The centralized methods include
SSC, NSN, TSC, SSCOMP, and EnSC. The
state-of-the-art one-shot federated clustering
method is k-FED.

• Datasets: EMNIST and Augmented
COIL100.

• Evaluation metrics: All algorithms are
evaluated by the clustering accuracy (ACC:
a%), normalized mutual information (NMI:
n%), connectivity of the affinity graph
(CONN: c), and running time.
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Evaluation on Synthetic Data
Fed-SC (SSC) Fed-SC (TSC)
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Empirical Evaluation on Real World Datasets
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6 Conclusion and Future Work

• We investigated federated clustering for high-dimensional data and proposed
the solution of one-shot federated subspace clustering.

• We theoretically and empirically guarantee the effectiveness of federated
schemes for subspace clustering, especially with the benefit of statistical
heterogeneity.

• The promising future directions are to theoretically guarantee privacy-preserving
and to consider privacy-utility tradeoffs in federated clustering.
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